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Abstract

We propose a concrete surface representation of abstract categorial
grammars in the category of word cobordisms or cowordisms for short,
which are certain bipartite graphs decorated with words in a given alpha-
bet, generalizing linear logic proof-nets. We also introduce and study
linear logic grammars, directly based on cobordisms and using classical
multiplicative linear logic as a typing system.
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1. Introduction

The best known categorial grammars are based on noncommutative vari-
ants of linear logic, most notably, on Lambek calculus (Lambek, 1958) and
its variations/extensions. On the other hand, such formalisms as abstract
categorial grammars (ACG) (de Groote, 2001), also known (with minor
variations) as _-grammars (Muskens, 2007) or linear grammars (MihaliÃek
and Pollard, 2012), arise from an alternative or, rather, complementary ap-
proach, and use ordinary implicational linear logic and linear _-calculus.
These can be called “commutative” in contrast to the “noncommutative”
Lambek grammars. Commutative grammars are attractive because of the
much more familiar and intuitive underlying logic, besides they are remark-
ably expressive. Unfortunately, basic constituents of ACG used for syntax
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generation seem extremely abstract: they are just linear _-terms. Identifying
an abstract _-term with some element of language is not so easy, and syntac-
tic analysis becomes complicated. It seems that some more concrete surface
representation for commutative grammars would be highly desirable.

In this work we propose that such a representation is indeed possible. We
introduce a specific structure of word cobordisms, or, simply cowordisms, as
we abbreviate for a joke. Word cobordism is a bipartite graph, more precisely,
a perfect matching (generalizing linear logic proof-nets), whose edges are
labeled with words in a given alphabet, and whose vertex set is subdivided
into the input and the output parts. This can be seen as a one-dimensional
topological cobordism (see Stong (2016), Baez and Dolan (1995)) decorated
with words, which explains our terminology. (For a pedestrian discussion of
cobordisms that might be relevant to the content of this paper, see Baez and
Stay (2011).)

Just as topological cobordisms, word cobordisms can be organized into a
category, with composition given by gluing inputs to outputs. The resulting
category has a rich structure, in particular it is compact closed (see Kelly and
Laplaza (1980), also Abramsky and Coecke (2009)), and, as any compact
closed category, it provides a denotational model for multiplicative linear
logic and for linear _-calculus. The latter model gives rise to the geometric
cowordism representation of string ACG that we discuss.

On the other hand, the very structure of cowordism category with its
involutive duality, suggests using classical (rather than intuitionistic) mul-
tiplicative linear logic (MLL) as more natural for this setting. Thus, we
also define and study linear logic grammars (LLG), based directly on the
cowordism representation and using MLL as the typing system. String ACG
can be seen as a particular case of LLG.

LLG with their underlying compact category could be seen as a commu-
tative version of pregroup grammars (see Lambek (1999)). This suggests
possible connections with categorical compositional distributional seman-
tics (DisCoCat) (Coecke et al., 2010), which use pregroup grammars a lot.
Indeed, DisCoCat models are based on finite-dimensional vector spaces and
use their symmetric and compact closed categorical structure in an essential
way. Arguably, LLG match these structures just better than other syntac-
tic formalisms. Although such a matching is not required for any known
construction, and we cannot say even if it is useful at all, it seems at least
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interesting that a parallel symmetric compact structure can be found on the
syntactic side as well.

(We should add though that the above parallelism does not go to the
extreme. Typically, DisCoCat models, apart from using the canonical sym-
metric compact structure of vector spaces, impose additional, non-canonical
structure of commutative Frobenius algebra, so called “spiders” (Coecke
et al., 2013). This latter commutativity has no analogue on the syntactic,
surface level.)

In any case, we think that the cowordism representation with its simple
geometric meaning and diagrammatic reasoning might be helpful for study-
ing language generation, some examples are given. Hopefully, it can also be
used for applying ideas of DisCoCat to various “commutative” formalisms,
thus going beyond context-free languages.

2. Boundaries and Multiwords

Let ) be a finite alphabet. We denote the set of all finite words in ) as )⇤,
and the empty word as n . For consistency of definitions, we will also need
cyclic words, which are equivalence classes of elements of )⇤ quotiented
by cyclic permutations of letters. For F 2 )

⇤ we denote the corresponding
cyclic word as [F]. For a set - of natural numbers and an integer = we use
the notation = + - = {= + < | < 2 -}, and = � - = {= � < | < 2 -}. For
multisets �, ⌫ we denote their disjoint union as �+ ⌫. For a positive integer
# , we denote I(#) = {1, . . . , #}. Finally, for positive integers # ," with
"  # , we will use the shifted embedding function shiftB

:
: I(") ! I(#),

where " + B  # , defined as shiftB
:
(8) = 8, if 8 < : , shiftB

:
(8) = 8+ B if 8 � : .

A boundary - consists of a natural number |- |, the cardinality of - , and
a subset -; ✓ I( |- |) of left endpoints of - . We will denote I( |- |) = I(-).
The complement of -; in I(-) is denoted as -A . Elements of -; are called
left endpoints of - and are said to have left polarity, while elements of -A

are right endpoints of - and have right polarity. A boundary - is, basically,
a linearly ordered finite set of cardinality |- |, equipped with a partition into
left and right endpoints.

For two boundaries - ,. and an integer 8 such that 8 + |. |  |- |, we say
that 8 + . is a subboundary of - if 8 + .; ✓ -; and 8 + .A ✓ -A . Given
two boundaries - and . , the tensor product boundary - ⌦ . and the dual
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xy
ba Boundary: - , |- | = 6, -; = {2, 5, 6}.

Edges: [6, GH, 1], [2, 10, 4], [5, n , 3].

Figure 1. Multiword

boundary -
? are obtained, respectively, by concatenation and order and

polarity reversal, i.e. |- ⌦ . | = |- | + |. |, (- ⌦ . ); = -; [ ( |- | + .;), and
|-

?
| = |- |, (-?

); = |- | + 1 � -A . The neutral element for tensor product is
the unit boundary 1 defined by |1| = 0, 1; = ;. Note that we have the identity
(- ⌦. )

? = .
?
⌦ -

?. This should not suggest any sort of noncommutativity
in the category of boundaries. We will have a natural isomorphism between
(- ⌦. )

? and -
?
⌦.

?, just not equality. The flip of tensor factors will allow
somewhat better pictures, with fewer crossings.

Given an alphabet ) , a regular multiword " over ) with boundary - is
a directed graph on the set I(-) of vertices, whose edges are labelled with
words in )

⇤, such that each vertex is adjacent to exactly one edge (so that it
is a perfect matching), and for every edge its left endpoint is in -; and its
right endpoint is in -A . In the following we will identify a regular multiword
with the set of its labeled edges. The notation [G,F, H] will stand for an edge
from G to H labeled with the word F.

A general multiword " over ) with boundary - is defined as a pair
" = ("0,"2), where "0, the regular part, is a regular multiword over )
with the boundary - , and "2 , the singular part, is a finite multiset of cyclic
words over ) . A multiword is acyclic or regular if its singular part is empty.
Otherwise it is singular.

Singular multiwords should be understood as pathological (in the context
of this work), but we need them for consistency of definitions. Geometrically,
a multiword can be understood as the disjoint union of an edge-labeled graph
and a collection of closed curves (i.e. circles) labeled with cyclic words.

We will use certain conventions for depicting multiwords, which guar-
antee unambiguous reading of pictures. Unless otherwise stated, points of
the boundary are ordered from left to right. Left endpoints are marked as
solid dots, and right endpoints as arrowheads. Also, our strict convention
for reading edge labels is that words in a picture are always read from left to
right, in the usual way, no matter what is the direction of edges. An example
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Ann

Jim
goes out with

a lot

=)

Ann

Jim
“goes out with”

“a lot”

Figure 2. Iterated contractions

is in Figure 1.
Given two multiwords " = ("0,"2) and# = (#0, #2) with boundaries

- and . respectively, the tensor product multiword " ⌦ # has boundary
- ⌦ . and is defined as the disjoint union, i.e. (" ⌦ #)2 = "2 + #2 and
("⌦#)0 = {[8,F, 9] | [8,F, 9] 2 "0}[{[|- |+8,F, |- |+ 9] | [8,F, 9] 2 #0}.

A crucial operation on multiwords is contraction, which consists in
gluing neighboring endpoints of opposite polarity and concatenating the
corresponding edge labels in the direction from the left endpoint to the right.
Here is an accurate definition.

Let " be a multiword with boundary - , and = < |- | be such that =
and = + 1 have opposite polarity in - . Let G be the right endpoint in the
pair (=, = + 1) and H be the left one. The elementary contraction h"i=,=+1

of " along = and = + 1 is the multiword "
0 with the boundary -

0, where
|-

0
| = |- | � 2, (-

0
); = (shift2

=
)
�1
(-;), constructed as follows. If G and

H are not connected with an edge in "0, then "
0
2
= "2 , and "

0

0 consists
of all edges [8,F, 9] such that [shift2

=
(8),F, shift2

=
( 9)] 2 "0 plus the edge

[U, DE, V] such that [shift2
=
(U), D, G], [H, E, shift2

=
(V)] are in "0. If there is

an edge [H,F, G] 2 "0, then "
0
2
= "2 + {[F]}, and "

0

0 consists of all edges
[8,F, 9] such that [shift2

=
(8),F, shift2

=
( 9)] 2 "0.

It is easy to see that in all cases "
0

0 is a perfect matching and its edges
start at left endpoints of -

0

;
. Also, when the contracted vertices G and H

happen to be connected with an edge, the resulting multiword necessarily is
singular.

Elementary contractions can be iterated.Let - , . be boundaries, 8 2 N
and assume that 8 +.?

⌦. is a subboundary of - . Let = = |. | = |.
?
|. Then

for any multiword " with boundary - we define the iterated contraction
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h"i8+.?⌦. of " along 8 + .
?
⌦ . by

h"i8+.?⌦. = h. . . h h h"i8+=,8+=+1i8+=�1,8+=i . . .i8+1,8+2

It is easy to check that the above is well defined.
In order to avoid possible ambiguity in pictures with iterated contractions,

we will use quotation marks. An example is shown in Figure 2, where dotted
lines connect neighboring vertices that will be contracted. When we replace
dotted lines with solid ones, the resulting graph has discontinuous edge
labels, and it is not immediately clear how to read them. Our convention is
that any block in quotation marks is read from left to right, as usual, while
several blocks labeling one edge are read in the order in which they appear
as we traverse the edge from the left endpoint to the right one. In particular,
in Figure 2, when all the zigzagging is reduced, we obtain the sentence
“Jim goes out with Ann a lot”.

3. Word Cobordisms

Let - ,. be boundaries and ) be an alphabet. A word cobordism or, simply,
a cowordism f : - ! . over ) from - to . is a multiword over ) with
boundary -

?
⌦ . . We say that . is the outgoing boundary of f, and - is

the incoming boundary. A cowordism is regular if its underlying multiword
is regular, otherwise it is singular.

When depicting a cowordism f : - ! . , we put elements 1, . . . , |- |
of the subboundary -

? on one vertical line, with the increasing order corre-
sponding to the direction up, and we put the elements |- | + 1, . . . , |- | + |. |

of the subboundary |- | + . on a parallel line to the right, in the increasing
order corresponding to the direction down.

For example, if the boundaries - ,. are given by

|- | = 4, -; = {3}, |. | = 4, .; = {2}, (1)

then a cowordism f : - ! . will be depicted as in Figure 3a (where we
indicate vertex numbers for clarity). The subboundary -

? of f corresponds
to the incoming boundary - by means of an order and polarity reversing
bijection. In particular the right endpoint 2 in the picture corresponds to the
left endpoint 3 of - .
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-

1
2
3
4

8
7
6
5

f .

(a) Detailed picture

f : -1 .1· · ·· · · g

-= .<

(b) Many inputs and outputs

f : - .f g : . /g g � f : - f /g

(c) Composition, schematic picture

f : - f . g : . /g g � f : - f /g

(d) Composition, detailed picture

Figure 3. Cowordisms

In general, when the structure of boundaries is not important, we “squeeze”
parallel edges into one and represent a cowordism f : - ! . schematically
as a box with an incoming wire labeled with - and an outgoing wire labeled
with . . More generally, we represent a cowordism f : -1 ⌦ . . . ⌦ -= !

.1 ⌦ . . . ⌦ .< as a box whose = incoming wires are labeled with -8’s and
< outgoing wires are labeled with .8’s, as in Figure 3b. Such a “squeezed”
picture is consistent with the full picture. If we “expand” each edge into par-
allel edges adjacent to points in the corresponding subboundary, we obtain
the detailed picture. When we depict a cowordism f : 1 ! - , respectively
g : - ! 1, we do not have wires on the left, respectively right.

This is, of course, a variation of the familiar pictorial language for
monoidal categories. Note, however, that, since cowordisms are, by defini-
tion, geometric objects, the diagrammatic representation is quite literal, and
diagrammatic reasoning is valid automatically, without further justification.

Matching cowordisms are composed by gluing incoming and outgoing
boundaries. Let boundaries - ,. , / and cowordisms f : - ! . , g : . !

/ , with the underlying multiwords "f , "g respectively be given. The
composition g � f : - ! / is the cowordism whose underlying multiword
"g�f is obtained as the iterated contraction "g�f = h"f ⌦ "gi |- |+. ⌦.? .
It is easy to see that, with our conventions, composition of cowordisms
f : - ! . , g : . ! / corresponds to the schematic picture in Figure 3c.

We get a detailed, “full” picture by expanding every edge into as many
parallel edges as there are points in the corresponding boundary. For ex-
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ample, if - ,. are as in (1), and / , say, has two points of opposite polarity,
then the schematic picture in Figure 3c translates to the detailed picture in
Figure 3d. It is evident from geometric representation that composition of
cowordisms is associative.

The identity cowordism id- : - ! - is the regular multiword with the
boundary -

?
⌦ - defined as

id- = {[|- | + 8, n , |- | � 8 + 1] | 8 2 -;} [ {[|- | � 8 + 1, n , |- | + 8] | 8 2 -A }.

In a schematic, “squeezed” picture, the identity cowordism corresponds to a
single wire: id- : - - . In the full picture there are as many parallel
wires as there are points in - . If - is as in (1), then the full picture is the
following: id- : - - .

Now let boundaries - ,. , / ,) and cowordisms f : - ! . , g : / ! )

be given. Let us write f0, respectively g0, for the regular part of (the
underlying multiword of) f, respectively g, and let us write f2 , g2 for the
respective singular parts.

The tensor product cowordism f ⌦ g : - ⌦ / ! . ⌦ ) is defined by the
multiword with the singular part (f ⌦ g)2 = f2 + g2 , and the regular part
(f ⌦ g)0 obtained as the union of edge sets f0, g0 appropriately shifted:

(f ⌦ g)0 = {[8 + |/ |,F, 9 + |/ |] | [8,F, 9] 2 f0}[

{[shift |- |+ |. |

|/ |+1
(8),F, shift |- |+ |. |

|/ |+1
( 9)] | [8,F, 9] 2 g0}.

In the graphical language, tensor product of cowordisms corresponds
simply to putting two boxes side by side, as in Figure 4a. The symmetry
cowordism B- ,. : - ⌦ . ! . ⌦ - is defined by the regular multiword with
the set of edges

{[|. |�8+1, n , |- |+|. |+8] | 8 2 .A }[{[|. |+|- |�8+1, n , |- |+2|. |+8] | 8 2 -A }[

{[|- |+ |. |+8, n , |. |�8+1] | 8 2 .;}[{[|- |+2|. |+8, n , |. |+ |- |�8+1] | 8 2 -;}.

A schematic picture of B- ,. is given in Figure 4b.
Finally, let us extend duality from boundaries to cowordisms. Let - , .

be boundaries, and f : - ! . be a cowordism. Let us identify f with the
underlying multiword f = (f0,f2).
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f ⌦ g :
- .f

/ )g

(a) Tensor product

B-. :
-

. -

.

(b) Symmetries

f :- .f f
? :

-
?

f

.
?

(c) Duality

f : - f .

.
?

-
?

f
? : f

(d) Duality in detail

-

.
/�

-

.
?

/

(e) Compact structure

Figure 4. Structure of the cowordism category

The dual cowordism f
? : .?

! -
? of f is the multiword with the

same singular part f2 and the regular part f?

0 obtained from f0 by a cyclic
permutation of boundary vertices: f

?

0 = {[q(8),F, q( 9)] | [8,F, 9] 2 f0},
where q(8) = 8 + |. |, if 8  |- |, q(8) = 8 � |- |, if 8 > |- |.

In a schematic picture, duality is shown in Figure 4c. The full picture,
again, can be recovered by expanding every wire into a parallel cluster. For
example, if - ,. are as in (1), the above picture translates to the one in Figure
4d. (We defined duality to flip tensor factors precisely in order to have this
consistency with “parallel wires substitution” in the graphical language.)

It is very easy to check that, for a fixed alphabet ) , we have a well-
defined categoryCowordT of boundaries and cowordisms, and the operation
of tensor product together with symmetry cowordisms make it a symmetric
monoidal category. Moreover there are natural isomorphisms

(- ⌦ . )
? � -

?
⌦ .

? Hom(. ⌦ - , /) � Hom(- ,.
?
⌦ /), (2)

which means that the duality makes the category compact (see Kelly and
Laplaza (1980), also Abramsky and Coecke (2009)). The first isomorphism
in (2) is the symmetry; the second one is shown in Figure 4e. In fact, in a
sense that can be made precise, the category of cowordisms over an alphabet
) is a free compact category generated by the free monoid )

⇤, where the
latter is seen as a category with one object (compare with Abramsky (2005)).
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G : � ` G : �(Id),
�, G : �,� ` C : ⌫

�,� ` (_G.C) : � ( ⌫

(( I),
� ` B : � � ` C : � ( ⌫

�,� ` (CB) : ⌫
(( E).

(a) Typing rules

�
�

�
⌫ =) �

�
?

�
⌫
(( �)

��

�
?

⌫

�
=)

�

⌫
�

(( ⇢)

(b) Cowordism representation

Figure 5. Cowordism representation of linear _-calculus

4. Representing Linear _-Calculus

Here we assume that the reader is familiar with basic notion of _-calculus,
see (Barendregt, 1985) for reference. We assume that we are given sets -

and ⇠ of variables and constants, with ⇠ \ - = ;. The set ⇤ = ⇤(- ,⇠) of
_-terms is constructed from - and ⇠ by applications and _-abstractions. In
linear _-calculus, terms are typed using (intuitionistic) implicational linear
logic (ILL).

Given a set # of literals or atomic types, the set ) ? = ) ?(#) of linear
implicational types (over #), is defined by the grammar) ? ::= # |) ? ( ) ?.
A typing judgement is a sequent of the form G1 : �1, . . . , G= : �= ` C : �,
where G1, . . . G= 2 - are pairwise distinct (= may be zero), C 2 ⇤(- ,⇠), and
�1, . . . , �=, � 2 ) ?(#).

A linear signature, or, simply, a signature, ⌃ is a triple ⌃ = (# ,⇠,T),
where # is a finite set of atomic types, ⇠ is a finite set of constants and T
is a function assigning to each constant 2 2 ⇠ a linear implicational type
T(2) 2 ) ?(#). We say that ⌃ is a signature over the set # of atomic types.

Typing judgements of the form ` 2 : T(2), where 2 2 ⇠, are called
signature axioms of ⌃. Typing judgements are derived using type inference
rules in Figure 5a (which happen to be natural deduction rules of ILL

decorated with_-terms). Given a signature⌃, we say that a typing judgement
is derivable in ⌃ if it is derivable from axioms of ⌃ by rules of linear _-
calculus. We write in this case � `⌃ C : �.

It is well known (Benton et al., 1992) that any symmetric monoidal closed
category, in particular, a compact closed category, provides a denotational
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model for linear _-calculus (invariant under V[-equivalence). We specialize
to the concrete case of the category CowordT of cowordisms over the given
alphabet ) .

So, let the sets # and ) of literals and terminal symbols respectively be
given. An interpretation b of linear types over # in CowordT consists in
assigning to each atomic type ? 2 # a boundary b (?). This is extended to
all types in ) ?(#) by b (� ( ⌫) = b (�)

?
⌦ b (⌫).

Now, given a linear signature ⌃ over # and ) , we want to extend the
interpretation to derivable typing judgements, so that a judgement of the
form G1 : �1, . . . , G= : �= ` C : � is interpreted as a cowordism of the form
b (�1) ⌦ . . . ⌦ b (�=) ! b (�). Interpretation of typing judgements consists
in assigning, for each constant 2 and axiom ` 2 : � of ⌃ (here � = T(2)),
a multiword b (2) with boundary b (�), which we identify with a cowordism
b (2) : 1 ! b (�).

This is extended to all typing judgements derivable in ⌃ by induction
on type inference rules. The (Id) axiom G : � ` G : � is interpreted as
the identity cowordism id

b (�) . Typing judgements obtained by the (( I)
or (( E) rules are interpreted according to Figure 5 (where the symbol b
is omitted). In the sequel we often will abuse notation and denote a type
in ) ?(#) and its interpretation in CowordT with the same symbol, as is
customary in the literature.

5. String Abstract Categorial Grammars

The string signature (CA) over ) , where ) is a finite alphabet, is the linear
signature with a single atomic type $, the alphabet ) as the set of constants
and the typing assignment T(2) = $ ( $ 82 2 ) . We denote the type
$ ( $ as BCA .

Any word F = 01 . . . 0= in the alphabet ) can be represented as the
term d(F) = 01 � . . . � 0=, where 01 � . . . � 0= = (_G.01(. . . (0= (G)) . . .)),
and `(CA) d(F) : BCA. Moreover, it can be shown that, for any term C, if
`(CA) C : BCA then C ⇠V[ d(F) for some F 2 )

⇤.
The cowordism representation b0 of the string signature (CA) over the

alphabet ) is given by the following interpretation in CowordT. For the
atomic type $ we put b0($) = {1}, (b0($)); = ;. (I.e. b0($) is a single-
point boundary). Then for each axiom ` 2 : $ ( $, where 2 2 ) , we
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put b0(2) = [1, 2, 2]. The latter is the multiword with boundary $
?
⌦ $

consisting of a single edge labeled with 2: 2 .
Given linear signatures ⌃8 = (#8 ,⇠8 ,T8), 8 = 1, 2, a homomorphism of

signatures q : ⌃1 ! ⌃2 is a pair of maps

q) ? : ) ?(#1) ! ) ?(#2), q)< : ⇤(- ,⇠1) ! ⇤(- ,⇠2),

such that q) ? (� ( ⌫) = q) ? (�) ( q) ? (⌫), q)<(CB) = (q)<(C)q)<(B)),
q)<(_G.C) = (_G.q)<(C)), q)<(G) = G for G a variable, and for any 2 2 ⇠1

it holds that `⌃2 q)<(2) : q) ? (T(2)).
An abstract categorial grammar over string signature (string ACG) ⌧ is

a tuple⌧ = (⌃01BCA ,) , q, (), where ⌃01BCA , the abstract signature, is a linear
signature, ) is a finite alphabet of terminal symbols, q : ⌃01BCA ! (CA) ,
the lexicon, is a homomorphism of signatures, and (, the initial type, is an
atomic type of ⌃01BCA with q) ? (() = BCA. We say that ⌧ is a string ACG
over ) . The string language ! (⌧) generated by a string ACG ⌧ is the set of
words ! (⌧) = {F 2 )

⇤
| 9C q)<(C) ⇠V[ d(F)& `⌃01BCA C : (}.

In the setting as above, the cowordism representation b0 of (CA) imme-
diately gives us an interpretation b of the abstract signature ⌃ in the category
CowordT of cowordisms over ) , obtained as the composition b = b0 � q.
That is, for any type � 2 ) ?(⌃) we put b (�) = b0(q) ? (�)), and for any
signature axiom ` 2 : T(2) of ⌃ we put b (2) = b0(q)<(2)). The latter is a
multiword with boundary b (q) ? (T(2))) = b0(T(2)).

Because q is a homomorphism of signatures, an easy induction on
derivation shows that for any typing judgement G1 : �1, . . . , G= : �= ` C : �
derivable in ⌃, its interpretation coincides with the interpretation of the
typing judgement G1 : q) ? (�1), . . . , G= : q) ? (�=) ` q)<(C) : q) ? (�)

(which is derivable in (CA) ). In particular, for the initial type ( we have
b (() = b0($

?
⌦ $) is a two-point boundary, and any derivable typing

judgement of the form `⌃ C : ( is interpreted as a single-edge multiword,
labeled with d(q)<(C)) .

We give a concrete example of a string ACG and its cowordism repre-
sentation. We consider the set of atomic types {#%, (} and the terminal
alphabet {John,Mary, loves,madly,whom}. The signature axioms and the
lexicon are collected in Figures 6a, 6b, while the translation to cowordisms
is shown in Figure 6c. We rotated pictures of cowordisms 90� counterclock-
wise, so that outgoing boundaries are shown on the top, with the ordering of
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` �$�# : #%, ` "�'. : #%, ` !$+⇢( : #% ( #% ( (,
` "�⇡!. : (#% ( () ( #% ( (,

` ,�$" : (#% ( () ( #% ( #%.

(a) Axioms
q) ? (#%) = q) ? (() = $ ( $,

q)<(�$�#) = John, q)<("�'. ) = Mary, q)<(��") = Jim,
q)<(!$+⇢() = _GH.(H � loves � G), q)<("�⇡!. ) =

_ 5 G.(( 5 · G) � (madly)),
q)<(,�$") = _ 5 G.(G � (whom) � ( 5 · (_H.H))).

(b) Lexicon

#%

John

�$�#

#%

Mary

"�'.

loves

#%
?

#%
?

(

!$+⇢(

madly

(
?

(#% #%
?

"�⇡!.

(
?

whom

#% #%
?

#%

,�$"

(c) Cowordism representation

Figure 6. Cowordism representation of a string ACG
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vertices from left to right.
We generate the noun phrase “Mary whom John loves madly”, repre-

sented as a term of type #%. The derivation is shown in Figure 7a; for
convenience, we break it into five consecutive steps. A step-by-step trans-
lation into the language of cowordisms is shown in Figures 7b, 7c with
omission of the last step, which should become clear by the end.

6. Linear Logic Grammars

Recall that, given a set # of positive literals or atoms, the set �< = �<(#)

of multiplicative linear logic (MLL) formulas over # is defined by the
grammar !8C ::= # |#

?, �< ::= !8C |�< ⌦ �< |�< ` �<. Connectives ⌦

and ` are called respectively tensor (also times) and cotensor (also par).
Linear negation (.)

? is not a connective, but is definable by induction as
(%

?
)
? = %, for % 2 # , and (� ⌦ ⌫)

? = ⌫
? ` �

?, (� ` ⌫)
? = ⌫

?
⌦ �

?.
Note that, somewhat non-traditionally, we follow the convention that

negation flips tensor/cotensor factors, typical for noncommutative systems.
This does not change the logic (the formulas � ⌦ ⌫ and ⌫ ⌦ � are provably
equivalent), but is more consistent with the intended interpretation in the
category of cowordisms. An MLL sequent (over the alphabet #) is a finite
sequence of MLL formulas (over #). The sequent calculus for MLL (Girard,
1987) is shown in Figure 8a.

It is well known (Seely, 1989) that semantics of MLL proof theory is
provided by ⇤-autonomous categories. Compact categories are a particular
(degenerate) case of these, so the category Coword) of cowordisms over an
alphabet ) allows interpretation of MLL (invariant under cut-elimination).

Just as in the case of linear _-calculus (and ILL), an interpretation
b consists in assigning to every atom � 2 # a boundary b (�). This is
extended to all formulas in �<(#) by b (� ⌦ ⌫) = b (�` ⌫) = b (�) ⌦ b (⌫)

and b (�
?
) = b (�)

? (note that the extension is well defined).
A sequent � = �1, . . . �= is interpreted as the cotensor of its formulas:

b (�) = b (�1 ` . . .` �=) = b (�1) ⌦ . . . ⌦ b (�=). A proof f of the sequent
` � is interpreted as a multiword with boundary b (�), which we identify
with a cowordism b (f) : 1 ! b (�). Rules for interpreting sequent calculus
proofs are represented in Figure 8b (the symbol b omitted and picture rotated
counterclockwise with outgoing boundaries on the top, as before).
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1) G:#%`G:#% `!$+ ⇢(:#%("%((

G:#%`!$+ ⇢( ·G:#%((
(( E)

2)
G : #% ` !$+⇢( · G : #% ( ( ` "�⇡!. : (#% ( () ( #% ( (

G : #% ` "�⇡!. (!$+⇢( · G) : #% ( (

(( E)

3)

` �$�# : #% G : #% ` "�⇡!. (!$+⇢( · G) : #% ( (

G : #% ` "�⇡!. (!$+⇢( · G)�$�# : (
(( E)

` _G."�⇡!. (!$+⇢( · G)�$�# : #% ( (

(( I)

4)
` _G."�⇡!. (!$+⇢( · G)�$�# : #% ( ( ` ,�$" : (#% ( () ( #% ( #%

` ,�$" (_G."�⇡!. (!$+⇢( · G)�$�#) : #% ( #%

(( E)

5)
` "�'. : #% ` ,�$" (_G."�⇡!. (!$+⇢( · G)�$�#) : #% ( #%

` (,�$" (_G."�⇡!. (!$+⇢( · G)�$�#)) · "�'. : #%

(( E)

(a) Derivation

1)
#%

#%

loves

#%
?

#%
?

(

=)

#%

loves

#%
?

(

= loves

#%

#%
?

(

2)
loves

#%

#%
?

( (
?

#%

madly

(#%
?

=)

loves

#%

madly

(#%
?

=

loves madly

#%

#%
?

(

(b) Cowordism representation, steps 1)-2)

Figure 7. ACG representation example
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loves madly

#%

#%
?

(

3)
#%

John

=)

“loves” madly

#%

(

“John”

=

John loves madly

#%

(

=)

(#%
?

John loves
madly

4)

(#%
?

John loves
madly

(
?

whom

#% #%
?

#%

=)

“John loves”
“madly”

“whom”

#%
?

#%

=

#%#%
?

whom John loves madly

(c) Cowordism representation, steps 2)-4)

Figure 7. ACG representation example (continued)
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` -
?
, - (Id), `�,- `-

?
,�

`�,� (Cut), `�,- ,. ,�
`�,. ,- ,� (Ex),

`�,- ,.

`�,-`. (`)
`�,- `. ,�
`�,-⌦. ,� (⌦).

(a) MLL sequent calculus

f g

� - �-
?

) f

�

g

�

(Cut)f

� - �.

) f

� - �.

(Ex)

f

� - .

) f

� - ` .

(`) f g

� - �.

) f

�

g

�- ⌦ .

(⌦)

(b) Cowordism representation

Figure 8. Cowordism representation of MLL

Given an interpretation b of �<(#) in the category CowordT, we say
that a cowordism typing judgement (over # and )) is an expression of the

form
f

` �
, where � is an MLL sequent (over #), and f : 1 ! b (�) is a

cowordism (over )).
A linear logic grammar LLG ⌧ is a tuple ⌧ = (# , b,) , !4G, (), where

# , b, ) are as above, while !4G, the lexicon, is a finite set of cowordism
typing judgements over # and ) , called axioms, and ( 2 # , the initial type,
is a positive literal with |b (() | = 2 and (b (()); a singleton. We say that

the cowordism typing judgement
f

` �
is derivable in ⌧, or that ⌧ generates

cowordism f of type � if there exists a derivation of ` � from axioms of
⌧ whose interpretation is f. Any regular cowordism of the initial type (

generated by ⌧ is an edge-labeled graph containing a single edge labeled
with a word over ) . Thus the set of type ( regular cowordisms can be
identified with a set of words in )

⇤. The language ! (⌧) generated by ⌧ is
the set of words labeling type ( regular cowordisms generated by ⌧.

Theorem 1 A language generated by a string ACG is also generated by an
LLG.

Proof Given a string ACG ⌧ = (⌃,) , q, () over the set # of atomic types
and the terminal alphabet ) , we identify types of ⌃ with a subset of the set
�<(#) of MLL formulas using the translation � ( ⌫ = �

? ` ⌫.
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Then the cowordism representation b of ⌧ gives us an interpretation of
�<(#) in CowordT. Taking as the lexicon !4G the set of all cowordism

typing judgements
b (2)

` �

, where ` 2 : � is an axiom of ⌃, we obtain the LLG

⌧
0 = (# , b,) , !4G, ().

By induction on derivations it can be shown that for any cowordism
f of the form f : b (�1) ⌦ . . . ⌦ b (�=) ! b (�), where �1, . . . , �=, �

are in ) ?(#), the cowordism typing judgement
f

` �
?
=
, . . . , �

?

1 , �
is deriv-

able in ⌧
0 i� f is the cowordism representation of some typing judgement

�1, . . . , �= ` � derivable in ⌃. (Essentially, this repeats the proof that ILL

is a conservative fragment of MLL.) The statement follows. ⇤
It seems reasonable to ask whether the converse is true. We would

expect that the answer is yes, and the formalism of LLG does not add extra
expressivity.

7. LLG and Multiple Context-Free Grammars

We discuss relations between LLG and multiple context-free grammars.
Assume that we are given a finite alphabet # of nonzero arity predicate
symbols called nonterminal symbols and a finite alphabet ) of terminal
symbols. Production is a sequent of the form

⌫1(G
1
1, . . . , G

1
:1
), . . . , ⌫= (G

=

1 , . . . , G
=

:=
) ` �(B1, . . . , B:), (3)

where �, ⌫1, . . . , ⌫= 2 # have arities : , :1, . . . , := respectively, {G 9

8
} are

pairwise distinct variables not from ) , and B1, . . . , B: are words built of
terminal symbols and {G

9

8
}, so that each of the variables G

9

8
occurs exactly

once in exactly one of B1, . . . B: (here = may be zero).
A multiple context-free grammar (MCFG) (Seki et al., 1991) ⌧ is a tuple

⌧ = (# ,) , (, %) where # ,) are as above, % is a finite set of productions,
and ( 2 # , the initial symbol, is unary.

The set of predicate formulas derivable in ⌧ is defined by the following
induction. Formula �(C1, . . . , C:) is derivable, if there is a production of the
form (3) in %, such that ⌫1(B

1
1, . . . , B

1
:1
), . . . , ⌫= (B

=

1 , . . . , B
=

:=
) are derivable,

and C< is the result of substituting the word B
9

8
for every variable G

9

8
in B<,
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` %(n , n) (1), ` &(n , n) (2), %(G, H) ` %(G0, H1) (3), &(I, C) ` &(I0, C0) (4),
&(I, C) ` &(I1, C1) (5), &(I, C), %(G, H) ` ((IGCH) (6).

(a) MCFG

(1)

G;

GA

H;

HA

% (2)&

I;

IA

C;

CA

(3)%%

G;

GA

H;

HA

G;

GA

H;

HA

1

0

(4)& &

I;

IA

C;

CA

I;

IA

C;

CA

0

0 (5)& &

I;

IA

C;

CA

I;

IA

C;

CA

1

1

(6)

I;

IA

C;

CA

G;

GA

H;

HA

&

%

(

(b) Cowordism representation

Figure 9. Cowordism representation of an MCFG

< = 1, . . . , : . (The case = = 0 is the base of induction.) The language
generated by an MCFG ⌧ is the set of words F for which ((F) is derivable.
It is well known that any MCFG translates to a string ACG (Salvati, 2006),
hence to an LLG as well.

A concrete example of a cowordism representation for an MCFG is given
in Figure 9. Here we have the terminal alphabet ) = {0, 1}, and nonterminal
symbols %, & and ( of arities 2, 2 and 1 respectively. The MCFG is defined
by the six productions in Figure 9a. It is easy to see that the above generates
the language {F0

=
F1

=
|F 2 )

⇤
, = � 0}.

Six cowordisms representing the productions are shown in Figure 9b
(for better readability, we label vertices with corresponding variables, the
subscripts ;, A denoting left and right endpoints respectively). In order to turn
these into axioms for an LLG, we have to get rid of the incoming wires. We
make all wires outgoing using the bijection �><(- ,. ) � �><(1, -?

⌦. )

(which is a particular case of (2), whose geometric meaning is shown in
Figure 4e).

Theorem 2 A language is generated by an MCFG i� it can be generated by
an LLG ⌧ with ⌦-free lexicon.

Proof Translation from MCFG to a (⌦-free) LLG is easy, an example has
just been shown. Let us prove the other direction.
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For a boundary - and a regular multiword " with boundary - , we
define the pattern ?0C (") of " as the graph obtained by erasing from "

all letters. The set %0CC (-) of all graphs obtained in this way as " varies is
the set of possible patterns of - . Note that %0CC (-) is finite (maybe empty).

Now, for any c 2 %0CC (-) choose an enumeration of edges in c and
introduce a :-ary predicate symbol - c , where : is the number of edges in
c (obviously, : is the same for all possible patterns of -). Then any regular
multiword " with boundary - can be unambiguously represented as the
predicate formula -

c
(F1, . . . ,F:), where c = ?0C ("), and F8 is the word

labeling the 8-th edge of c in " , 8 = 1, . . . , : .
In a similar way, any cowordism f : -1 ⌦ . . . ⌦ -= ! - can be encoded

into a finite set of productions. (The above described representation of a
multiword is a particular case when = = 0).

Fix possible patterns c1, . . . , c= of -1, . . . -= respectively. There exists
at most one possible pattern c of - such that, whenever ?0C ("8) = c8 ,
8 = 1, . . . , =, it holds that ?0C (f � ("1 ⌦ . . . ⌦ "=)) = c. If such a c does
not exist, then the chosen combination of patterns composed with f does
not produce a regular multiword and is irrelevant for us.

Otherwise choose fresh variables G
8

9
, 9 = 1, . . . , :8 , where :8 is the

number of edges in c8 , 8 = 1, . . . , =. Let "8 be the multiword obtained from
c8 by labeling the 9-th edge with G

8

9
. Let " = f � ("1 ⌦ . . . ⌦ "=). It is a

multiword with ?0C (") = c. Let B 9 be the word labeling the 9-th edge of
" , 9 = 1, . . . , : , where : is the number of edges in c. The interaction of
f with the chosen combination of patterns is represented as the production
-

c1
1 (G

1
1, . . . , G

1
:1
), . . . , -

c=
=

(G
=

1 , . . . , G
=

:=
) ` -

c
(B1, . . . , B:).

Let %A>3 (f) be the set of all productions obtained in this way from f

by varying possible patterns of -1, . . . , -=. Again, note that %A>3 (f) is
finite.

Now, let ⌧ = (# , b,) , (, !4G) be a ⌦-free LLG. The symbol b will be
omitted in what follows.

We know that a sequent ` �, �` ⌫ is derivable in MLL i� ` �, �, ⌫ is.
And since axioms of ⌧ do not use any connective other than `, it follows
that ⌧ is equivalent to a grammar that does not use any logical connective
at all. By cut-elimination, any derivation of the sequent ` ( from axioms of
⌧ is equivalent to a derivation not using any logical rule either, i.e. to a one
using only the Cut rule.
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We construct an equivalent MCFG ⌧
0 = (#

0
,) , (

0
, %), by taking the set

of nonterminal symbols # 0 = {�
c
| � 2 # [#

?
, c 2 %0CC (�)}, and writing

for each axiom U 2 !4G of the form
f

` �1, . . . , �=

, where �1, . . . , �= are

literals, all productions representing cowordisms

f8 : �
?

8+1 ⌦ . . . ⌦ �
?

=
⌦ �

?

1 ⌦ . . . ⌦ �
?

8�1 ! �8 , 8 = 1, . . . , =,

obtained from f using correspondence (2) and symmetry transformations.
We put %A>3 (U) =

–
8

%A>3 (f8), and then % =
–

U2!4G

%A>3 (U).

As for the initial symbol (0 of ⌧
0, we observe that there is only one

possible pattern B for the boundary (, and we put (0 = (
B. An easy induction

on derivations shows that ⌧ and ⌧
0 generate the same language. ⇤

As a corollary we obtain the known result that any second order ACG
generates a multiple context-free language (Salvati, 2006). Thus, we gave a
new, geometric proof, arguably quite simple and intuitive.

8. Backpack Problem

An LLG of a general form can generate an NP-complete language, just as
an ACG (see (Yoshinaka and Kanazawa, 2005)). We give the following, last
example as another try to convince the reader that the geometric language
of cowordisms is indeed intuitive and convenient for analyzing language
generation.

We will consider the backpack problem in the form of the subset sum
problem (SSP): given a finite sequence B of integers, determine if there is a
subsequence B0 ✓ B such that

Õ
I2B0

I = 0. It is well known (Martello and Toth,

1990) that SSP is NP-complete. We will generate by means of an LLG an
NP-complete language, essentially representing solutions of SSP.

We represent integers as words in the alphabet {+,�}, we call them
numerals. An integer I is represented (non-uniquely) as a word for which
the di�erence of + and � occurrences equals I. We say that a numeral is
irreducible, if it consists only of pluses or only of minuses.

We represent finite sequences of integers as words in the alphabet ) =
{+,�, •}, with • interpreted as a separation sign. Thus a word in this alphabet
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(

(

(2>=B :
((

+

((

�
?DB⌘ :

•
(2;>B4 :

(a) Cowordisms for lists summing to zero

�

(

(>?4=� :
•

�2;>B4� :
��

+
?DB⌘+ :

��

�
?DB⌘� :

(b) Cowordisms for deceptive slots

Figure 10. Encoding the backpack problem

should be read as a list of numerals separated by bullets. When all numerals
in the list are irreducible, we say that the list is irreducible.

Now consider two positive literals �, ( and interpret each of them as
the boundary - of cardinality 2 with -; = {2}. First we construct a system
of cowordisms which, together with symmetry transformations, generates
all irreducible lists of integers that sum to zero. The three cowordisms
2>=B : ( ⌦ ( ! (, ?DB⌘ : ( ⌦ ( ! ( ⌦ (, 2;>B4 : 1 ! ( are shown
in Figure 10a. The cowordism 2>=B, by iterated compositions with itself,
generates lists with arbitrary many empty slots, then ?DB⌘ fill the slots with
pluses and minuses (always in pairs), and 2;>B4 closes them. All generated
lists will sum to zero, and all irreducible lists summing to zero will be
generated.

Now, in order to generate solutions of SSP we need some extra, “de-
ceptive” slots, which contain elements not summing to zero. These slots
will be represented by the boundary �. The corresponding cowordisms
>?4=� : � ⌦ ( ! (, ?DB⌘+ : � ! �, ?DB⌘� : � ! �, 2;>B4� : 1 ! �

are shown in Figure 10b. The cowordism >?4=� adds deceptive slots to the
list, ?DB⌘� and ?DB⌘+ fill them with arbitrary numerals, and 2;>B4� closes
them.

Although, pedantically speaking, the above system is not an LLG ac-
cording to our definitions, we obtain an LLG by making all wires outgoing,
just as in the above discussion of MCFG. Let us denote the generated lan-
guage as !0. It is easy to see that !0 membership problem is, essentially,
SSP. More precisely SSP polynomially reduces to !0 membership problem.
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Indeed, a sequence B of integers is a solution of SSP i� the corresponding
irreducible list is in !0. It follows that !0 is NP-hard.

On the other hand, it is also easy to see that !0 membership problem is
itself in NP. Indeed, in order to show that a list B is in !0 it is su�cient to
demonstrate a sequence of cowordisms from Figures 10a, 10b generating B,
and the number of cowordisms in such a sequence clearly is bounded linearly
in the size of B. Thus !0 is, in fact, NP-complete.
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